29 | 03 | 2024

Проблема очистки промышленных вод в настоящее время является актуальной. Сложность и неоднозначность данной проблемы обусловлена большим разнообразием промышленных технологий. Выбор технологической схемы очистки стоков зависит от многих факторов: типа производства, исходного сырья, требований к качеству и объемов очищаемых сточных вод. Выбор очистных сооружений предусматривает комплексную оценку производственных условий: наличие имеющегося очистного оборудования, наличие производственных площадей для модернизации имеющегося и размещения нового оборудования, входящие и требуемые на выходе концентрации загрязняющих веществ и многое другое. Грамотное решение проблемы очистки промышленных сточных вод возможно при соблюдении технологии очистки сточных вод. [5]

Очистка промышленных сточных вод организуется с целью использования их в системах оборотного, последовательного или замкнутого водоснабжения, обеспечения условий приема в городские системы водоотведения или сброса в водные объекты. [6]

Вода, использованная в технологическом процессе, содержит примеси виде: взвешенных частиц размером от 0,1 мкм и более, образующих суспензии; не растворяемых в воде капелек другой жидкости, образующих эмульсии; коллоидных систем с частицами размером от 1 мкм до 1 нм и растворенных в воде веществ в молекулярной или ионной форме. Примеси, держащиеся в технологической воде, часто являются ценным сырьем или поветовой продукцией.

Все методы очистки вод подразделяются на механические, физико-химические и биологические.

Механические методы очистки обеспечивают извлечение из очищенные вод взвешенных и плавающих примесей. Наиболее простой способ этих примесей - отстаивание, в процессе которого взвешенные вещества оседают на дно, а плавающие примеси всплывают на поверхность отстойников. Отстойники устраиваются горизонтальные, вертикальные и радиальные.

В зависимости от вида удаляемых плавающих примесей отстойники могут называться нефтеловушками, жироуловителями и т.п. Эффективность удаления из воды плавающих примесей составляет 95-96%. Всплывшие примеси удаляются с поверхности специальными приспособлениями и направляются на утилизацию.

Для удаления из воды волокнистых примесей (частичек шерсти, ниток, асбеста и др.) используется дисковый волокноуловитель, представляющий собой вращающийся перфорированный диск, по которому тонким слоем стекает очищаемая жидкость.

Для повышения эффективности процесса осветления к очищаемой в отстойниках жидкости добавляют коагулянты - вещества, которые при взаимодействии с водой образуют хлопьеобразные частицы размером 0,5-3 мм с развитой поверхностью, обладающие также небольшим электрическим зарядом. При оседании эти хлопья захватывают из жидкости взвешенные и коллоидные частицы. В качестве коагулянтов применяются сернокислый алюминий, хлорное железо и др. Расход их составляет от 40 до 700 кг/м3 очищаемой жидкости. Высокие дозы относятся к физико-химической очистке технологических вод, обеспечивающей удаление хрома и цианидов, а также обесцвечивание воды.

Интенсификации процесса коагуляции способствует добавка флокулянтов - веществ, обеспечивающих агрегирование пластин коагулянтов и ускоряющих тем самым их осаждение. В качестве флокулянтов применяют клейкие вещества: крахмал, декстрин, силикатный клей. Весьма эффективным является синтетический флокулянт - полиакриламид (ПАА), широко использующийся также при подготовке питьевой воды. Доза применения ПАА колеблется от 0,5 до 25 г/м3 очищаемой жидкости. Внедряются в практику и другие коагулянты и флокулянты на основе активных полимеров, дозы применения которых в десятки раз меньше.

Тонкодисперсные частички, которые не удается извлечь из жидкости в отстойниках, могут быть удалены с помощью фильтрования. Процесс фильтрования заключается в прохождении жидкости через пористую преграду, на которой осаждаются мелкодисперсные частицы. В качестве фильтрующего слоя используются зернистые материалы (песок, гранитная или мраморная крошка, керамзит и др.), ткани и нетканые полотна (хлопчатобумажные, шерстяные, синтетические, из асбеста, стекловолокна и др.), металлические сетки, перфорированные пластины, пористая керамика. Для ускорения процесса фильтрование производится под давлением или с помощью вакуума. Для извлечения нефтепродуктов, масел и других эмульгированных примесей применяются фильтры из полиуретана. Эффективность удаления взвешенных и эмульгированных примесей методом фильтрования достигает 99% и более.

В гидроциклонах и центрифугах разделение жидкой и твердой фаз производится под воздействием центробежных сил.

Для удаления взвешенных веществ используются напорные гидроциклоны. Для удаления плавающих примесей применяются открытые гидроциклоны. Гидроциклон представляет собой металлический аппарат, состоящий из цилиндрической и конической частей. Диаметр цилиндрической части - от 100 до 700 мм, высота примерно равна диаметру. Угол конусности составляет 10-20°. Внутри аппарата имеются струенаправляющие лопасти в виде винтовой спирали. Поданная под давлением жидкость, двигаясь по спирали к сливу, отделяется от взвешенных веществ. Часть жидкости с большим содержанием взвесей удаляется из гидроциклона, а осветленная вода под действием образовавшегося вакуума движется вверх и изливается через верхнее отверстие. В открытом (безнапорном) гидроциклоне удаление осветленной воды происходит через боковые отверстия, а всплывающие примеси извлекаются с помощью сифона. Гидроциклоны, по сравнению с другими устройствами для механической очистки вод, отличаются высокой производительностью, компактностью, экономичны в изготовлении и эксплуатации. Эффективность очистки от взвешенных и плавающих примесей составляет примерно 70%.

Центрифугирование является эффективным методом разделения и эмульсий. Центрифуги изготовляются периодического и непрерывного действия с автоматической выгрузкой осадка и осветленной жидкости (фугата). При центрифугировании достигается достаточно высокая степень обезвоживания осадка и получается относительно чистый фугат. Центрифуги потребляют большое количество электроэнергии, создают высокие шумовые нагрузки и небезопасны в эксплуатации.

Физико-химические методы очистки обеспечивают удаление из воды, как правило, растворенных веществ, неподдающихся или плохо поддающихся биологической очистке, а также веществ, которые могут оказать неблагоприятное воздействие на коллекторы или другие элементы систем водоотведения.

Наиболее простым и распространенным методом физико-химической очистки является нейтрализация, которая заключается в подкислении щелочных вод (с рН>8,5) и подщелачивании вод с рН<6,5. При наличии на производстве кислых и щелочных вод нейтрализация достигается их смешением. При отсутствии одной из категорий вод нейтрализация осуществляется путем добавки реагента. Для нейтрализации кислых вод лучше всего использовать отходы щелочей - гидроокиси натрия или калия, не дающие осадка. При использовании гидроокиси кальция в виде известкового молока образуется шлам, который необходимо удалять, обезвреживать и утилизировать. Нейтрализация кислых вод достигается также фильтрованием их через слой известняка, доломита, магнезита, шлака или золы.

Для нейтрализации щелочных вод используется отработанная серная кислота. Высокоэффективным методом нейтрализации щелочных вод является продувка через них газовых выбросов, содержащих оксиды серы, углерода, азота и другие кислотообразующие окислы. Таким образом обеспечивается временно эффективная очистка дымовых газов.

Реагентная обработка применяется для очистки вод от цианидов, роданидов, ионов тяжелых металлов и ряда других примесей. Вид применяемого реагента определяется составом примесей, подлежащих удалению из воды. Так, разложение цианидов достигается обработкой воды жидким хлором или веществами, выделяющими активный хлор, - хлорной известью, гипохлоридом кальция или натрия.

Окислением удается добиться деструкции таких соединений, как альдегиды, фенолы, анилиновые красители, серосодержащие органические вещества и др. В качестве окислителей применяют кислород, озон, перекись водорода, пиролюзит. В процессе окисления происходит разложение вредных примесей до простых окислов или образование соединений, поддающихся биохимическому разложению.

Извлечение из воды ионов ртути, хрома, кадмия, свинца, никеля, меди, мышьяка основано на переводе их из раствора в нерастворимый осадок. С этой целью очищаемую воду обрабатывают соединениями натрия или кальция - сульфитом, бисульфитом или сульфидом, карбонатами или гидроокисью. Образующийся шлам удаляют, утилизируют или складируют.

Одним из высокоэффективных методов очистки является ионный обмен, который представляет собой процесс взаимодействия очищаемой жидкости с зернистым материалом, обладающим способностью заменять ионы, находящиеся на поверхности зерен, на ионы противоположного заряда, содержащиеся в растворе. Такие материалы называются ионитами. Иониными свойствами обладают природные минералы - цеолиты, апатиты, полевые шпаты, слюда, различные глины. Синтезировано большое число высокоэффективных ионитов, обладающих селективными свойствами. К ним относятся силикагели, алюмогели, пермутиты, сульфоугли и ионообменные смолы - синтетические высокомолекулярные органические соединения, углеводородные радикалы которых образуют пространственную сетку с фиксированными на ней ионообменными функциональными группами. Иониты не растворяются в воде, обладают достаточной механической прочностью, обеспечивают возможность их регенерации с получением ценных веществ, извлекаемых из очищаемых вод. Существуют ионообменные установки периодического и непрерывного действия (рис. 2). Установки периодического действия работают как фильтры с зернистой загрузкой в виде гранул ионитов. При насыщении поверхности гранул ионами вещества, извлекаемого из воды, производится их регенерация слабым раствором (2-8%) щелочи или кислоты. В установках непрерывного действия гранулы ионитов и очищаемая жидкость движутся противотоком, постоянно перемешиваясь. В процессе работы часть гранул подаются на регенерацию и заменяются новыми. Благодаря высокой механической прочности и способности к регенерации гранулы ионитов имеют довольно продолжительный срок службы. Ионный обмен является, по существу, универсальным методом очистки вод. Для извлечения практически любого вещества из воды можно подобрать соответствующий ионит или группу ионитов. Эффективность ионообменной очистки достигает 95-99%.

Другим универсальным и высокоэффективным методом очистки вод является сорбция. Сорбция применяется преимущественно для очистки сточных вод, которые содержат высокотоксичные вещества, неподдающиеся биохимическому окислению. Метод сорбционной очистки основан на адгезии (прилипании) растворенных веществ поверхностью и порами сорбента - вещества, обладающего разветвленной внешней и внутренней (поры) поверхностью. Наилучшим сорбентом является активированный уголь. Сорбционными свойствами обладают золы, шлаки, опилки, коксовая крошка, торф, керамзит и др. Конструкции установок сорбционной очистки аналогичны ионообменным.

Высокая эффективность очистки достигается в установках с псевдосжиженным ("кипящим") слоем, когда в полую вертикальную колонну снизу под давлением подается очищаемая вода, проходящая через слой сорбента, который находится во взвешенном состоянии. Отработанный сорбент заменяется новым или регенерируется. При поддержании сорбента в "кипящем" слое, когда достигаются наилучшие условия контакта его внешней и внутренней поверхности с очищаемой жидкостью, эффективность очистки достигает 99%. Если псевдосжиженный слой слеживается, эффективность очистки резко снижается.

Флотационная очистка применяется для удаления из воды поверхностно-активных веществ (ПАВ), нефтепродуктов, жиров, смол и др. Процесс флотации заключается в сорбировании содержащихся в воде примесей поверхностью пузырьков воздуха, нагнетаемого в очищаемую жидкость. В практике очистки вод используются напорные, безнапорные, вакуумные и электрофлотационные установки.

Список используемой литературы

1. Калыгин А.В. Промышленная экология: учебное пособие для студентов высших учебных заведений / В.Г. Калыгин. - М.: Издательский центр "Академия", 2004. - 432 с.

2. Экология: учебник / под редакцией Г.В. Тягунова, Ю.Г. Ярошенко. - М.: Интермет Инжиниринг, 2000. - 300 с.

3. Родионов А.И. Техника защиты окружающей среды: учебник для вузов / А.И. Родионов, В.Н. Клушин, Н.С. Торочешников. - 2-е изд., перераб. и доп. - М.: Химия, 1989. – 512 с.

4. Экология города: Учебник. - К.: Либра, 2000. - 464 с.

5. Экология и безопасность жизнедеятельности: учебное пособие для вузов / Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; Под ред. Л.А. Муравья. - М.: ЮНИТИ-ДАНА, 2000. – 447 с.

6. Туровский И.С. Обработка осадков сточных вод М.: Стройиздат 1984.

7. Жуков А.И. Монгайт И.Л., Родзиллер И.Д. Методы очистки производственных сточных вод М.: Стройиздат.

8. Евилович А.З. Утилизация осадков сточных вод М.: Стройиздат 1989.

9. А.Г. Банников, А.К. Рустамов, А.А Вакулин Охрана природы М.: Агропромиздат 1987.

10. Яковлев С.В., Карелин Я.А., Ласков Ю.М., Воронов Ю.В. Очистка поверхностных сточных вод. – Г.: Стройиздат, 1985. – 384 с.

11. Охрана окружающей природной среды. Под редакцией Г.В. Дуганова Киев: “Выща школа” 1990.

12. Ковальчук В.А. Очистка стічних вод. – Рівне: ВАТ “Рівненська друкарня”, 2002. – 622 с.

13. Пономарев В.Г., Исакимис Э.Г., Монгайт И.Л. Очистка сточных вод нефтеперерабатывающих заводов. – Г.: Химия, 1985. – 256 с.

Рейтинг Яндекс.Метрика